
Diversifying Heuristics for GVGAI

Beyond Playing to Win:

Cristina Guerrero-Romero, Annie Louis and Diego Perez-Liebana
Conference on Computational Intelligence and Games (CIG) (2017)

Ultimate Goal
> Use of General Video Game (GVG) agents for evaluation.

> Create system to analyse levels and provide feedback.
> Pool of agents capable of understanding a level without having prior information about it.

First Step
> Diversifying Heuristics in General Video Game Artificial Intelligence (GVGAI).

Motivation 2/24

GVGAI Framework

What?
> JAVA based open source framework.

> Arcade-style 2D 1 or 2 player games.
> Games described in Video Game Description Language (VGDL).

> Used for the General Video Game Artificial Intelligence Competition (GVGAI).

BasicGame key_handler=Pulse square_size=40
SpriteSet

floor > Immovable img=newset/floor2
hole > Immovable color=DARKBLUE img=oryx/cspell4
avatar > MovingAvatar img=oryx/knight1
box > Passive img=newset/block1 shrinkfactor=0.8
wall > Immovable img=oryx/wall3 autotiling=True

LevelMapping
0 > floor hole
1 > floor box
w > floor wall
A > floor avatar
. > floor

InteractionSet
avatar wall > stepBack
box avatar > bounceForward
box wall box > undoAll
box hole > killSprite scoreChange=1

TerminationSet
SpriteCounter stype=box limit=0 win=True

wwwwwwwwwwwww
w........w..w
w...1.......w
w...A.1.w.0ww
www.w1..wwwww
w.......w.0.w
w.1........ww
w..........ww
wwwwwwwwwwwww

3/24

GVGAI Framework

Why?
> Tool for General Artificial Intelligence algorithms benchmarking.

> Sample agents available.
> 150+ games available.

> It would be possible to apply the idea to GVGP.

4/24

Experimental setup

> 20 games from the GVGAI platform (10 deterministic, 10 stochastic).
> 5 controllers (OLETS, OLMCTS, OSLA, RHEA and RS).

> 4 heuristics (WMH, EMH, KDH and KEH).

> 1 level per game played 20 times for each 20 different configurations.

> By heuristic, agents ranked by performance for that heuristic criteria.
> F1 ranking system.

> Rankings comparison and analysis.

5/24

Controllers

Sample controllers
> OLETS (Open-Loop Expectimax Tree Search)

Developed by Adrien Couetoux , winner of the 2014 GVGAI Competition.

> OLMCTS (Open-Loop Monte-Carlo Tree Search)

> OSLA (One Step Look Ahead)
> RHEA (Rolling Horizon Evolutionary Algorithm)

> RS (Random Search)

Common ground modifications
> Depth of the algorithms set to 10.
> Evaluation function isolated to be provided when instantiating the algorithm.

> Cumulative reward implemented.

6/24

Heuristics

> Heuristics define the way a state is evaluated
> 4 heuristics with different goals

Exploration

Knowledge Discovery

Knowledge Estimation

Winning

7/24

Heuristics

Winning Maximization (WMH)

Goal: To win the game

if is EndfTheGame() and is Loser() then
return H-

else if is EndOfTheGame() and is Winner() then
return H+

return new score - game score

> Winning.
> Maximizing score.

> All sample agents original strategy.

8/24

Results

Winning Maximization (WMH)

Criteria

1> Number of wins.
2> Higher average score.

3> Less time steps average.

WMH Stats (overall games)
Controller F-1 Points Average % of Wins

OLETS 449 59.00 (5.43)

RS 356 51.00 (4.24)

OLMCTS 333 41.50 (3.69)

OSLA 283 34.00 (4.95)

RHEA 224 10.00 (3.29)

9/24

Heuristics

Exploration Maximization (EMH)

Goal: To maximize the exploration of the level

if is EndfTheGame() then
return H−

else if is outOfBounds(pos) then
return H−

if not hasBeenBefore(pos) then
return H+/100

else if is SameAsCurrentPos(pos) then
return H−/200

return H−/400

> Maximizing visited positions.

> Use of exploration matrix.
> Not visited/visited positions.

10/24

Results

Exploration Maximization (EMH)

Criteria

1> Percentage of level explored.
2> Less time steps average to find last new position.

EMH Stats (overall games)
Controller F-1 Points Average % Explored

RS 428 74.94 (1.83)

OLETS 377 76.86 (2.19)

OLMCTS 309 65.60 (1.64)

OSLA 282 54.14 (2.18)

RHEA 204 27.56 (1.64)

11/24

Heuristics

Knowledge Discovery (KDH)

Goal: To interact with the game as much as possible, triggering sprite spawns and interactions

if is EndfTheGame() and is Loser() then
return H−

else if is EndfTheGame() and is Winner() then
return H−/2

else if is outfBounds(pos) then
return H−

if newSpriteAck() then
return H+

if eventOccured(lastTick) then
if is newUniqueInteraction(event) then

return H+/10
else if is newCuriosityCollision(event) then

return H+/200
else if is newCuriosityAction(event) then

return H+/400
return H−/400

> Acknowledging the different elements.
> New interactions with the game.
> Curiosity: Interactions in new locations.

> Use of sprite knowledge database.
> Interaction table (collision& action-onto).

12/24

Results

Knowledge Discovery (KDH)

Criteria

1> Sprites acknowledged.
2> Unique interactions achieved.

3> Curiosity discovered.

KDH Stats (overall games)
Controller F-1 Points % Ack (Rel) % Int (Rel) % CC (Rel) % CA (Rel)

RS 414 100.00 96.18 85.46 87.42

RHEA 342 99.66 95.48 62.48 54.44

OLMCTS 330 99.79 93.53 84.75 84.06

OLETS 279 99.86 88.97 90.72 77.55

OSLA 235 98.48 84.99 56.37 51.75

4> Last acknowledgement game tick.
5> Last unique interaction game tick.

6> Last curiosity discovery game tick.

13/24

Heuristics

Knowledge Estimation (KEH)

Goal: To predict the outcome of interacting with sprites, changes in the victory status and in score

if is EndfTheGame() and is Loser() then
return H−

else if is EndfTheGame() and is Winner() then
return H−/2

else if is outfBounds(pos) then
return H−

if newSpriteAck() then
return H+

if eventOccured(lastTick) then
if is newUniqueInteraction(events) then

return H+/10
return rewardForTheEvents(events) -> in [0; H+/100]

n_int = getTotalNStypeInteractions(int history)
if n_int == 0 then

return 0
return H−/(200 × n_int) -> in [H-/200; 0]

> Predicting the outcome of the interaction with
each element.
> Acquiring knowledge: win condition & score change
> Interacting with the game uniformly.

> Use of sprite knowledge database.
> Interaction table (collision& action-onto).

14/24

Results

Knowledge Estimation (KEH)

Criteria

1> Smallest average for the prediction square error.
2> Number of interactions predicted.

KEH Stats (overall games)
Controller F-1 Points Avg Sq error average % Int Estimated (Rel)

OLMCTS 347 0.338 97.92

RHEA 330 0.505 97.50

OSLA 313 0.617 73.19

RS 310 0.528 98.33

OLETS 300 1.086 87.92

15/24

Heuristics 16/24

Heuristics - Demo 17/24Heuristics - Demo 17/24

https://www.youtube.com/watch?v=aLgPm9kbfY8

https://www.youtube.com/watch?v=aLgPm9kbfY8

Results

Rankings
WMH EMH KDH KEH

1 449 OLETS 428 RS 414 RS 347 OLMCTS

2 356 RS 377 OLETS 342 RHEA 330 RHEA

3 333 OLMCTS 309 OLMCTS 330 OLMCTS 313 OSLA

4 283 OSLA 282 OSLA 279 OLETS 310 RS

5 224 RHEA 204 RHEA 235 OSLA 300 OLETS

18/24

Conclusions

> First step in the possibility of enlarging GVGP techniques.

> Agent performance changes depending on the heuristic used.
> It is challenging and difficult to achieve different goals with a good performance for every game when it
is generalized.

19/24

Future work

> Heuristics improvement and enlargement.
> Heuristics combination.

> Repeat experiments using more levels.
> Apply idea to learning approaches (learn by repetition without forward model).

> Use GVGAI for evaluation, ultimately applied to PCG.

20/24

21

Thanks!

Questions?

http://github.com/kisenshi

@kisenshi

21/24

http://github.com/kisenshi

