Ensemble Decision Systems
for General Video Game Playing

Damien Anderson, Philip Rodgers and John Levine
Computer and Information Sciences
University of Strathclyde
Glasgow, United Kingdom
{damien.anderson, philip.rodgers, john.levine} @strath.ac.uk

Abstract—Ensemble Decision Systems offer a unique form of
decision making that allows a collection of algorithms to reason
together about a problem. Each individual algorithm has its own
inherent strengths and weaknesses, and often it is difficult to
overcome the weaknesses, while retaining the strengths. Instead
of altering the properties of the algorithm, the Ensemble Decision
System augments the performance with other algorithms that
have complementing strengths. This work outlines different
options for building an Ensemble Decision System as well as
providing analysis on its performance compared to the individual
components of the system with interesting results, showing an
increase in the generality of the algorithms without significantly
impeding performance.

Index Terms—GVGAI, GVGP, Ensemble Decision Systems,
Game Al

I. INTRODUCTION

When developing agents to play a game, characteristics of
the game under consideration can be included in the logic to
guide them to the objective and play optimally, but that agent
will not be able to perform well in other games or when a
rule is updated. General Video Game Playing (GVGP) aims to
tackle the challenge of building agents capable of performing
well in different games, so these agents’ value functions need
to be as general as possible.

Most of the heuristics present in planning algorithms devel-
oped for GVGP focuses on specific goals, which usually are
winning or guiding the agent following the maximization of
the score. Others also include information about the proximity
of different elements of the game, which is combined with the
previous ones. The agents follow these goals and they perform
well in certain types of games, while the reward structure is
well defined, or the goals are in a reachable distance. However,
what happens when the game is built in a way where the
reward structure is not clear or is designed to guide the agents
away from the optimal solution? What happens in games with
large maps where the agent needs to move in a particular path
to reach the goal? The agents who focus on just the goal and
score will have a poor performance; being unable to solve the
games. A solution would be building an agent with new goals
that overcomes the weakness of that heuristics (e.g. focused on
exploring the level). Nevertheless, even when this new agent
could solve the games that the other ones were unable to, it

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

Cristina Guerrero-Romero and Diego Perez-Liebana
School of Electronic Engineering and Computer Science
Queen Mary University of London
London, United Kingdom
{c.guerreroromero, diego.perez} @qmul.ac.uk

may become worse at games that it previously did well at,
which is not the outcome we are looking for.

The approach taken by some authors to tackle this problem
is using systems that combine different agents based on the
type of game they believe they are facing, but their perfor-
mance relies entirely on the correct prediction of the game.
The solution we present in this paper is using an Ensemble
Decision System (EDS), which is built to make the most
of different agents by focusing on their strengths instead of
weakness. We carried out an experiment where we ran a
series of EDS with different configurations and compared their
performance in contrast with known sample agents provided
in the General Video Game Al framework. The results show
the flexibility of this approach and open an interesting GVGP
line of research to develop its full potential.

II. BACKGROUND

The field of General Video Game Playing (GVGP) began
in 2013 as a way of promoting interest towards developing
game playing agents that could play a wide variety of video
games [1]. The initial interest in this field originally sprang
from work in General Game Playing and a desire to explore
game playing agents in real-time situations [2].

The GVGP field is supported through an online competition
known as the General Video Game Al competition! (GVGAI)
where entrants can submit GVGP agents. The GVGAI com-
petition offers a framework that provides a large library of
games, up to 122 currently. Further games can be quickly
created and added to the library through the Video Game
Description Language (VGDL) that simplifies the game cre-
ation process [3]. The competition also offers a variety of
tracks for different types of agents. These tracks focus on two
main areas, planning and learning [4] [5]. The planning track
offers both a single player and multi-player variation, which
provide agents with a forward model in order to facilitate
search-based algorithms. Agents can use the forward model
to search through and evaluate future states of the game. The
learning track, on the other hand, removes the forward model
and replaces it with a training period before official evaluation
occurs which allows agents to develop a policy for playing the

Uhttp://www.gvgai.net/

game. The work carried out for this research focuses on the
single player planning track.

Over the years the competition has received a large number
of entrants [6], though only a few have attempted to incorpo-
rate multiple types of algorithms into one system. These agents
typically take on a portfolio approach, however, determining
the type of game being played and applying a single algorithm
to that game. One such example is YOLOBOT, which uses
the game dynamics observed to determine whether a game is
deterministic or stochastic, running, respectively, a heuristic
Best First Search or Monte Carlo Tree Search (MCTS) [7].
Another agent, Return42, uses a similar approach but instead
uses an A* algorithm for stochastic games, and random walks
for deterministic games [8]. These approaches have enjoyed
a great deal of success in the GVGAI competition, yet, rely
largely on the correct identification of the type of game to
fully leverage the strength of the algorithms. Mendes et al.
used a portfolio hyper-agent approach that predicted which of
the seven controllers they included should be used based on
the features present in the game; outperforming the winners
of the 2014 and 2015 competitions [9].

The concept of tackling complex problems with an array of
algorithms has found success in other areas of Al research.
Most notably, Google Deepmind’s AlphaGo makes use of
multiple systems to create complex behaviour that is capable
of defeating professional human players at the game of Go
[10]. By using a combination of neural networks and tree
search algorithms, the system is capable of succeeding where
no single algorithm has been able to so far. Similarly, an
Ensemble Decision System (EDS) has achieved a world record
for an Al playing the game of Ms. Pacman. The EDS achieves
this by allowing complex behaviour to emerge from the
combining of simple algorithms that focus on specific tasks,
such as collecting pills or dodging ghosts [11].

One of the main challenges to overcome is the notion of
games, or environments, that are purposefully designed to lead
agents away from an optimal outcome [12]. Perez et al. took
a look at the robustness of agents to disruptive changes in
the environment, such as a forward model that would return
incorrect information, or a system that would occasionally
apply a random action instead of the agent’s intended action
for a given state [13].

III. CONTROLLERS

In this section we present, and briefly describe, the algo-
rithms and heuristics that have been either included in the
EDS implemented (Section IV) or executed for performance
comparison.

A. Algorithms

The controllers used in these experiments belong to the
sample pool of the GVGAI framework.

1) sampleRandom: The action is chosen randomly between
the options available.

2) One Step Look Ahead (OSLA): Tt estimates the reward
gained for each of the possible actions on the next step of
the game and chooses the action that returns the highest
value. The sampleOneStepLookAhead agent uses by default
the SimpleStateHeuristic, provided in the framework.

3) Open-Loop Monte-Carlo Tree Search (OLMCTS): 1t is
a variant of Monte-Carlo Tree Search (MCTS) [14] that is
designed to work better in stochastic environments. It uses the
forward model to reevaluate the actions instead of keeping the
states of the game in the nodes of the tree. The sampleMCTS
version provided in the framework has a rollout length of 10
and a C-value of v/2. The default value function takes into
consideration the winning condition and the raw score.

4) Open-Loop Expectimax Tree Search (OLETS): Tt is
based on the Hierarchical Open-Loop Optimistic Planning
(HOLOP), improved to work better in stochastic environments.
Its details and the differences between both algorithms are
described in [4]. The version provided by the framework has
a playout length of 5 and the default value function takes into
consideration the winning condition and the raw score.

5) Rolling Horizon Evolutionary Algorithm (RHEA): 1t is
an evolutionary algorithm that uses a population of individuals,
which represents a sequence of actions to execute in a specific
order. The plan of actions of each individual is evaluated using
a forward model and the agent takes the first action of the
individual with the best fitness [15]. The sampleRHEA pro-
vided in the framework uses the WinScoreHeuristic, evolves
the individuals keeping 10 at a time and has a mutation rate of
1. It applies mutation and crossover to get the next generation
until the time runs out. Because it produces as many sequences
as possible in this time, the number of individuals is dynamic.

6) Random Search (RS): It is similar to RHEA, but it
randomly generates the individuals instead of evolving them.
The sampleRS uses lengths of 10, and it produces as many
sequences as possible in the given time.

The algorithms that we executed in the experiments as
a point of comparison were not modified in any way.
However, those that we included as part of the EDS
required some modifications that do not affect their core
implementation but allow them to fit the needs of the system.
These include those related to the abstraction of the heuristics
[16], and the modifications needed to make the algorithms
return Opinions instead of the action to take. As detailed in
the next section, an Opinion is a simple data structure which
holds the action to take, a value computed for that action and
the name of the algorithm which suggested it.

B. Game Heuristics

The EDS combines different algorithms and game heuris-
tics. The heuristics that we utilize go further than merely
winning the game by following score, and are based on the
work of Guerrero-Romero et al. [16].

1) Winning Maximization Heuristic (WMH): Its goal is
winning the game, maximizing the score when reaching the
winning status is not possible.

2) Exploration Maximization Heuristic (EMH): Its goal is
maximizing the exploration of the level, prioritizing visiting
those locations that were not visited before, or have been
visited less often. For these experiments, this heuristic has
been updated regarding the one in [16], so winning the game
is always rewarded instead of penalized.

3) Knowledge Discovery Heuristic (KDH): Its goal is
interacting with the game as much as possible to trigger
interactions, and new sprite spawns. For these experiments,
this heuristic has been updated regarding the one in [16], so
winning the game is always rewarded instead of penalized.

4) Knowledge Estimation Heuristic (KEH): Its goal is
interacting with the game to predict the outcomes of the in-
teractions between the different elements of the game, related
to both the victory status and score modifications.

IV. ENSEMBLE DECISION SYSTEMS

Each of the algorithms described have their own strengths
and weaknesses. Each algorithm can solve a different set of
problems, but none can currently solve all of them.

Ensemble Decision Systems are a flexible system for com-
bining the decisions of multiple algorithms into a single
action. Instead of trying to develop complex problem solving
behaviour in a single algorithm, complexity is built up with
simpler layers of behaviours that each focus on different
aspects of a problem, or different types of problems altogether.

Expanding the capabilities of an algorithm whilst maintain-
ing the strengths it already has can be challenging. EDS’s offer
a potential solution to this by allowing each algorithm to focus
on its strengths, and addressing their weaknesses through other
algorithms. Intuitively, if an algorithm is good at finding paths
through an environment, but bad at identifying long term goals,
then combining that initial algorithm with a long term planner
may give the overall system the best of both worlds.

A. Architecture

The EDS is comprised of two components. The algorithms,
known as voices, which evaluate the current state, and the
arbitrator (Section IV-C), which makes the final decision of
which action to take. When a game begins, the arbitrator is
given the state which is then passed to each voice. The voices
perform their own analysis and then return their opinion to
the arbitrator. An opinion is a data structure which holds the
action selected, as well as a value assigned to that action.

Once every voice has returned their opinion, the arbitrator
will use a final action selection policy to decide which action
to take, based on the information from the voices.

This architecture can be adjusted in a variety of ways. First
of all, the number of voices, and which are used, can be
altered at implementation or at run-time. For example, if a
voice does not seem to be performing well in a given game,
it can be disabled or swapped with another voice to improve
overall system performance. The action selection policy is also
a parameter which can be adjusted. Some examples would be
using a bandit selection algorithm to decide which action to
take from the opinions, or a diplomatic option which selects

the action that most voices have selected. A neural network
could also be trained to identify which voices do well in
certain states, as an action selection policy. Each voice could
potentially assign a value to all possible actions, and the action
selection policy then decides based on the highest value, and
could potentially decide actions that none of the voices had
primarily suggested. There are a wide number of possibilities
available for adjusting the EDS.

B. Action Selection Policies

The policy used to select the action to take has a large
impact on the overall behaviour of the EDS. The variations
that were used for the experiments are the following:

1) Highest Value: This policy simply selects the action
which returns the highest value, based on the analysis of its
voice. The possible range from this is not currently limited,
though future work would look at normalizing the output from
the heuristics.

2) Diplomatic: This policy is only useful when using more
than two voices in the system, and essentially selects the action
that has the most votes from the voices. The action that is
returned with each Opinion is counted as a vote in favour
of that action. In the case that no majority exists, then an
alternative action selection policy is used. For the experiments
in this work, this was the random action selection policy.

3) Random: This policy simply selects an opinion at ran-
dom and uses the action assigned to it.

C. Arbitrator

The arbitrator can be implemented in a number of different
ways, depending on the constraints of the problem set. In
particular, the GVGAI has a 40ms per action time limit that
needs to be respected, which has a significant impact on the
analysis that algorithms can do. This has a large impact on
an EDS because each algorithm has to be allocated a slice
of that 40ms. Further impacting this, the GVGAI does not
allow multi-threading, which is where an EDS would be able
to leverage the voices simultaneously.

In order to deal with these limitations, two different arbi-
trators, described in this section, were created and tested.

1) Central Arbitrator: This arbitrator splits the 40ms
evenly between all of the voices within the system. As an
example, if there are N voices, then each voice receives
(40/N) — 1 ms per time-step to return its opinion.

2) Asynchronous Arbitrator: This arbitrator gives each of
the voices within the system the full 40ms decision time, but
does so by skipping actions until each voice has returned an
opinion. If there are N voices within the system, then for N-1
time-steps a Nil action is returned and a voice performs its
analysis. At the Nth time-step, after all voices have returned
their Opinions, then an action is selected based on the current
action selection policy. The decision of taking no-op actions
comes from the will to affect the game the least, so the voices
analyze the most similar state of the game as possible.

D. Variations

Some of the variations that were tested for this work are
outlined in the following sections.

1) BestFour: This variation makes use of prior work, which
measured the performance differences in playing GVGAI
games with different heuristics [16]. The heuristics created for
that work with the algorithms identified as performing best for
each heuristic were used here in an EDS. There are four voices
in this variation (OLETS with WMH, RS with EMH, RS with
KDH and OLETS with KEH), the Central Arbitrator is used,
and the action selection policy is Highest Value.

2) BestFourDiplo: This variation uses the same four voices
as BestFour (OLETS with WMH, RS with EMH, RS with
KDH and OLETS with KEH) and the Central Arbitrator, but
it uses Diplomatic as the action selection policy instead.

3) BestExpSc: There are two voices in this variation:
OLETS with WMH and RS with EMH. The Central Arbitrator
is used, and the action selection policy is Highest Value.

4) MCTSExpSc: There are two voices used in this variation:
MCTS with WMH and MCTS with EMH. This variation was
tested to give a more direct comparison to the sampleMCTS
controller. The Central Arbitrator is used and the action
selection policy is Highest Value.

5) OLETSExpSc: There are two voices used in this vari-
ation: OLETS with WMH and OLETS with EMH. This
variation was tested to give a more direct comparison to the
OLETS controller. The Central Arbitrator is used, and the
action selection policy is Highest Value.

6) OLETSExpScAsync: There are two voices used in this
variation: OLETS with WMH and OLETS with EMH. It uses
the the Asynchronous Arbitrator and Highest Value as the
selection policy. This variation was also tested to give a more
direct comparison to the OLETS controller.

V. GAME SELECTION

There are 122 available single-player games in the GVGAI
Framework at the time of writing? and running the experiments
using all of them is prohibitively time consuming. Therefore, a
subset of these was selected, with enough diversity to ensure
that the games selected represent the full variety of options
available from the GVGAI set.

The choice of games for the experiment was based on
previous work. Twenty games were based on Gaina et al.
selection in [17], where they used a balanced set of 20
stochastic and deterministic games. We also included the ten
games which collectively provided the highest information
gain in Stephenson er al. work in [18]. Because 2 of the
games are present in both sets (Chopper and Escape), the total
number of games used in the experiment was 28 (Table I).

The selection includes a series of deceptive games, which
are designed to lead the agent away from the most optimal
solution [12]:

Zhttps://github.com/GAIGResearch/GVGAI/blob/master/examples/all_
games_sp.csv

TABLE I
THE GAMES SELECTED FROM THE GVGAI FRAMEWORK (GAMES IN
BOLD ARE DECEPTIVE)

Aliens Avoidgeorge Bait Butterflies
CamelRace Chase Chopper Crossfire
Digdug Escape Freeway Hungrybirds
Infection Intersection Invest Labyrinthdual
Lemmings | Missilecommand Modality Plaqueattack
Roguelike Seaquest Sistersavior | Survivezombies
Tercio Waitforbreakfast Watergame Whackamole

a) Butterflies: The goal is capturing all of the butterflies
before the time runs out or all the cocoons open. A cocoon
opens when a butterfly collides with it, spawning a new butter-
fly. Each butterfly captured increases the score +2. Therefore,
the higher the number of cocoons opened, the higher the final
score can be. Trying to win quickly leads to a less optimal
solution, as the score will not be as high as it could.

b) Invest: The goal is maximizing the score by collecting
gold coins and investing them with the investors. Investing
too much and getting into debt results in a loss. Once an
investment is made, that investor will disappear for a set
period, before returning and awarding a higher amount of
points to the player. Each gold coin awards 1 points when
collected; the Green investor takes 3 points and returns 5 after
30 timesteps; the Red investor takes 7 points and returns 15
after 60 timesteps; the Blue investor takes 5 and returns 10
after 90 timesteps.

¢) Lemmings: Lemmings are spawned from one door and
try to get to the exit of the level. There are obstacles on the
way, so the goal is destroying these so the lemmings can reach
the exit. For every lemming that reaches the exit +2 is given,
but —1 is subtracted from every piece of wall destroyed. If a
lemming falls into a trap, the score is reduced —2, and if it is
the avatar who falls, the score is reduced —5.

d) Sistersavior: The goal is rescuing all of the hostages
to be able to defeat the scorpion and win the game. There is
the option to kill the hostages, receiving a moderate immediate
reward (+2 points if shot vs. 41 if rescued). The scorpion
provides 14 points if defeated, but it can only be defeated if
all 3 hostages are rescued.

VI. EXPERIMENTAL WORK

This section describes the experiments that were carried out
and provides instructions for replication.

A. Experimental Setup and Specifications

The code used for the experiments is in a Github reposi-
tory>. All of the experiments were performed using a laptop
running Linux Mint with an Intel i7-8565U CPU with 16GB
of RAM.

The GVGAI framework has up to five levels available for
each of the games. Each level was run 30 times in order to
build up confidence in the results being gathered, having 150

3https://github.com/Damorin/PhD-Ensemble-
GVGAI/tree/master/src/COGPaper

runs per game for each controller. Each successful iteration
of a game that resulted in either a win or loss without any
crashes produces one unit of data, containing the information
[agent, game, score, win/lose, time]. In total, 48,600 units
of data were generated from these experiments, with each
game generating 1800 units of data across all of the agents.
The controllers described in Sections III and IV were used
for these experiments. The final list of controllers can be found

in Table II.
TABLE II
FULL LIST OF CONTROLLERS USED
EDS Agents Sample Agents
BestExpSc OLETS
BestFourDiplo sampleMCTS
BestFour sampleOneStepLookAhead
MCTSExpSc sampleRandom
OLETSExpSc sampleRHEA
OLETSExpScAsync | sampleRS

B. Results

To thoroughly analyze the performance of the GVGAI
agents, both wins and scores are taken into account. A number
of visualizations and a ranking of performance based on those

metrics have been created. These are detailed below:

1) Percentage of wins per game: Fig. 1 shows the percent-
age of wins that each agent achieved in each game. It has been
ordered to show the win rates per game, with the easier games

to win at the top and the harder at the bottom.

infection |
invest

aliens -
intersection -|
butterflies |
whackamole |
waitforbreakfast |
freeway |
seaquest |
chopper]
plaqueattack |
missilecommand -

hungrybirds -]
escape -|
survivezombies -|

modality -
labyrinthdual -
crossfire |
camelRace - -
bait -
sistersavior -
avoidgeorge —-
chase -|
lemmings -
roguelike -
tercio-
digdug -

watergame -
! ! ! ! ! ! ! ! ! ! ! !
O 4o O, O Yoy Bas,, Bes, S5,

Lerg teng, QQ"S e:’ﬁ— *% % IO e N

s PSe G ‘? Ry, cy P, gy, ry, O,
q c oy, s, 03,
()
Ve

660'

Fig. 1. Total percentage of wins (0 — 100%) of each controller by game.

2) Score average per game: Fig. 2 shows the average score
that each agent achieved per game. The score depends on the
game considered, so to have all the results on the same scale to
be able to be displayed together, the average of the scores per
game were normalized. This normalization was done by taking
the maximum and minimum score average obtained by the
agents in a game, and used those values for the normalization,
so that for every game, there is an agent whose score is
represented by 0 and another represented by 1, and all others
in between. This approach visualizes the difference in scores
between the agents, by game, in an informative manner. It
is possible to distinguish between those games were agents
manage to get a score easily, and those were they struggle, and
the contrast between the higher and lower average obtained.

aliens-|
butterflies -]
escape-|
survivezombies -|
bait
lemmings |
modality |
chopper-|
waitforbreakfast -
labyrinthdual -
plagueattack |
seaguest |
chase -]
infection -]
whackamole |
sistersavior—

0.2

missilecommand -|
hungrybirds -]
intersection |
digdug-|
roguelike -]
crossfire -|
avoidgeorge |
tercio |
invest -
camelRace -
freeway -

watergame - -

0, 8,
e e @seﬁr%p,wer
5

Fig. 2. Average scores per game. To be able to make a comparison between
the different games, the scores have been normalized, taking the maximum
and minimum average scores obtained in each game as limits for that game.

3) FI Ranking: In order to have an overall performance
of the agents through every game, we include a Formula 1
(F1) ranking, like the one used in the GVGAI Competition
[4]. Each agent receives 25, 18, 15, 12, 10, 8, 6, 4, 2, 1
or 0 points per game based on their performance regarding
the rest of the algorithms in that game. The performance is
measured with the data that was gathered at the end of each
run (Section VI-A), considering the total number of wins, the
average of the score and the average of timesteps per game.
In general, the agent with a higher number of wins is better
in that game. In case there is a tie, the highest average score
between the agents breaks the tie. In the case that there is
a tie in both measures, the lowest average of timesteps is
considered. The highest ranked agent receives 25 points in

that game, the second one 18, and so on, until all agents have
been assigned a score. If there is a tie in the three measures,
those agents involved in it will receive the same number of
points. Table IIT shows the final ranking overall the 28 games
used in the experiment.

TABLE III
CONTROLLERS RANKED BY THE TOTAL NUMBER OF F1-POINTS GAINED
OVERALL THE GAMES. IT INCLUDES THE TOTAL PERCENTAGE OF WINS
(% WINS) AND THE NUMBER OF DIFFERENT UNIQUE GAMES WON
(#GAMES) BY EACH OF THEM.

Controller F-1 %Wins | #Games
1 OLETS 501 | 55.69% 25
2 OLETSExpSc 463 | 53.59% 27
3 BestExpSc 318 | 42.86% 24
4 OLETSExpScAsync 316 | 45.52% 24
5 sampleMCTS 253 | 40.00% 19
6 sampleRS 237 | 39.76% 22
7 BestFourDiplo 213 | 33.02% 23
8 sampleRHEA 194 | 36.71% 23
9 BestFour 182 | 28.93% 22
10 MCTSExpSc 181 | 33.29% 22
11 | sampleOneStepLookAhead 88 21.48% 12
12 sampleRandom 29 9.29% 15

C. Discussion

The first finding is that overall the best performing agent
is the OLETS agent, which gets a final score of 501 points
and wins the most amount of games out of all of the agents
(55.69%). The second highest, OLETSExpSc, has a similar
level of performance (53.59%), though the games that it
wins are quite different from OLETS. In particular, it is
able to outperform OLETS on a variety of games, such as
Waitforbreakfast, Crossfire and Escape. OLETSExpSc also
appears to make progress towards winning over a wider range
of games than OLETS, with OLETS winning at least once 25
unique games, as opposed to OLETSExpSc, winning 27.

In regards to deceptive games, which are currently not
solved by the sample agents, such as SisterSavior and Lem-
mings, EDS agents manage to achieve significant results.
Interestingly, the best-performing agents on these levels are
EDS agents which use OLETS as their voices, but the standard
OLETS algorithm is not able to progress on these games.
This improvement in the OLETS performance suggests that
combining the traditional OLETS algorithm with a dedicated
search algorithm provides enough of an advantage to allow
OLETS to solve more problems beyond its original capability.

OLETSExpSc gets 59 of 150 wins in SisterSavior, OLET-
SExpScAsync, 50, and BestExpSc, 9, when OLETS gets 1
and the rest of the algorithms, none. In particular, the EDS
algorithms are able to consider compromising their immediate
score reward (saving the hosts instead of killing them), having
the chance to reach the most challenging goal and win the
game.

In Lemmings, the EDS agents that manage to win the game
are MCTSExpSc, OLETSExpSc, BestFour, BestFourDiplo and
OLETSExpScAsync, with 4, 12, 15, 20 and 43 of 150 wins
respectively. As Fig 3 shows, they also have the lowest score

average, as they use heuristics with further considerations
other than trying to maximize the score, not being afraid
of losing points while exploring the level and destroying
the walls. Even when the solutions might not be the most
optimal ones, and their levels could be solved getting a higher
score average, they are able to win the game when the other
controllers fail.

BestExpSc
& Wi
BestFourDipla samplsRS @ Avg. I;:ore
s----" "
“
- .\
BestFour ¢ * sampleRHEA
~ .
s
' 1
[]
!

4 P
MCTSExpSc ." *ampleﬂandom

' |

i 1

)]

] 1

@----—- L.
- ”
OLETS " sampheOneStaplookAhaad
- /
-
~ N . #
L
OLETSExpSc sampleMCTS
OLETSExpSchsync

Fig. 3. Lemmings stats per agent. The pct. of wins is in range [0, 100%] and
the avg. of score is relative to the maximum and minimum scores achieved
in the game (range: [—143, 1]). Values have been normalized in this figure.

Looking further at the deceptive games, Invest has some
interesting results (Fig. 4). All of the sample agents score an
average of five or less across their games of Invest, while the
EDS agents manage to score significantly higher. This is an
interesting result as the deception in Invest was designed to
trick search based agents that would typically be reluctant to
surrender their current score in order to progress. The EDS
agents are able to perform well in this game, with BestFour
scoring highest with an average of 123. Interestingly, one of
the EDS agents, MCTSExpSc, loses some of the games. As
the sampleMCTS agent does not lose any games of Invest in
the experiments, it seems that the exploration combined with
MCTS causes it to take some risks, while increasing its overall
performance.

Games where OLETS still performs notably better than
its EDS versions, are discussed next. In Missilecommand,
OLETSExpSc gets 22.00% of wins and OLETSExpScAsync
22.67%, in contrast with OLETS’s 48.67%. We believe that
this decrease is due to the exploratory behaviour added to
these agents, which brings them to explore the level instead
of focusing on achieving the goal of the game. When the
agents finally realize they are about to lose, they are too
far away to be able to prevent themselves from losing the
game. In Chopper, OLETS manages to win most of the
games (99.33% of wins) with an average of score of 17.03.
In contrast, OLETSExpSc achieves a 76.00% of wins and
an average of score of 4.5, and OLETSExpScAsync gets a
16.00% of wins averaging —5.55 points. In Plaqueattack, the

BestExpSc

& % Wins

BestFourDiplo @ Avg. Score

sampleRS

BestFour

sampleRandom

OLETS pOneSieplockAhead

OLETSExpSc sampleMCTS

OLETSExpSchAsync

Fig. 4. Invest stats per agent. The percentage of wins is in range [0, 100%]
and the avg. of score is relative to the maximum and minimum scores achieved
in the game (range: [—7,161]). Values have been normalized in this figure.

decrease of performance is even higher: OLETS manages to
get 96.00% of wins when OLETSExpSc only wins a 30.00%
of the games and OLETSExpScAsync does not win any of
them. Looking at the behaviour of the agents in both of these
games, during observation the Async controller spends most
of the time exploring rather than learning to gain points. The
central controller moves much faster, reaching new positions
sooner and, therefore, lessening the value of the exploration
heuristic sooner. It allows it to focus on the score and win the
game. This may be due to the exploration heuristic providing
excessively high evaluations in the decision process of these
agents, causing them to ignore the actual goal. Hence, the
value returned by the EDS agents’ heuristics should be tuned
in future work to have a more balanced input from all of the
heuristics in levels with a large state space, particularly where
the rewards are focused in a small area of the level.

CamelRace is a racing game where the avatar must get to the
finish line before any other camel does. It is a compelling case
to comment on, as it is quite a simple game that the complex
algorithms struggle to solve but OSLA, one of the simplest
controllers in the sample batch, gets 120 of 150 wins. Some
EDS agents perform better than OLETS (21 wins) in this game
(MCTSExpSc, BestFourDiplo, BestExpSc and OLETSExpSc,
with 28, 32, 33 and 38 wins respectively) but they are far
behind OSLA. The reason for the good performance of OSLA
comes from how fast the game is, the well defined path
that should be followed and the lack of score rewards until
the end. Because the win state is not reached unless the
agent heads to the goal, and there is no score information
to use, the agents that just use these values as a reference
will behave randomly until their movement heads them to
the exit. If those agents are lucky enough to choose those
actions that get them closer to it quickly, then they may win.
Exploring in this game is also not beneficial, because the path
to the exit should be followed quickly to avoid losing. OSLA’s

heuristic (SimpleStateHeuristic) considers, apart from winning
condition and score, those actions where the distance between
the avatar and the closest portal sprite (which is the category
of the goal sprite) is small. In the first four levels, where this
information is enough to reach the goal, it manages to get
there promptly. However, in the last level, where there is a
wall between the agent and the goal, it gets stuck not being
able to rectify its path.

Finally, an example where the exploration heuristic is prof-
itable is Hungrybirds. In this game, the player is a bird that
needs to exit a maze but needs to find food and eat it while
doing so to avoid dying. As observed in Fig. 5, the only sample
agent with a significant number of wins is OLETS, while
the rest of the sample controllers achieve less than a 4.60%
winning rate. In contrast, all EDS agents based on sample
controllers achieve between 32.00% and 74.00% win rate, and
OLETSExpScAsync improves OLETS (92.67% vs 76.00%).
Something similar happens in other games such as Escape,
Labyrinthdual and Lemmings. These results show how using
agents with different policies can help to improve the win rates
in a game, showing the potential of the approach developed.

BestExpSc
& %W
BestFourDiplo sampleR3 . Abwg. I;iare
BestFour sampleRHEA
MCTSExpSc sampleRandom
OLETS sample0OneSteplockAhead
OLETSExpSc sampleMCTS
OLETSExpSchsync

Fig. 5. Hungrybirds stats per agent. The pct. of wins is in range [0, 100%)]
and the avg. of score is relative to the maximum and minimum scores achieved
in the game (range: [0, 140]). Values have been normalized in this figure.

VII. CONCLUSIONS AND FUTURE WORK

This work presents a novel approach to designing GVGP
agents through the use of an Ensemble Decision System
(EDS) and showcases a number of potential variations of how
such a system may work. While the EDS does not currently
outperform the individual algorithms, it maintains a significant
portion of their strengths and adds to the generality of the agent
by allowing it to succeed at more games. The flexibility of the
EDS is the main strength that it offers, and the potential of
this approach has not yet been fully explored.

The results show the potential of combining different algo-
rithms with different goals using this kind of system. OLETS’
EDS variant is able to win two more games than the original

agent without compromising its overall performance, simply
by providing two different intentions to take into consideration.
One of these games, Lemmings, is a deceptive game that
none of the sample controllers are able to solve but five
different EDS systems win, one of them 43 times. This is
an impressive result that shows what this approach is capable
of achieving, having noted potential that could be developed
further. A similar generality improvement is seen between the
sampleMCTS and MCTSExpSc, winning in 19, vs 22 games.

Future work for this project will look at developing fur-
ther variations of the system, which could look at different
action selection policies or types of arbitration. Possibilities
in this area could include developing a bandit style selection
algorithm for deciding which voice should be selected, or the
arbitrator itself could be a neural network that is trained to
identify which voices are best suited to deal with a given state.
It will also compare EDS to portfolio approaches as they have
distinct strengths and weaknesses that would be interesting to
analyze in detail.

At the moment the EDS variations that have been imple-
mented are quite naive. There has not been any optimization of
which voices work best together, or development of the more
sophisticated arbitrators and action selection policies. Each
voice is treated as an expert, and their evaluation is trusted.
This creates some performance issues for certain games, that
were highlighted earlier in Section VI-C. In particular, it seems
that there are cases where the exploration heuristic might be
providing more weight in the decision process of the agents
than it should. This has been noticed especially in games that
present significant exploratory areas but where the primary
objective of the game is focused on a particular area. This
problem could be improved by not only tuning the values
returned by the heuristics, but by adding in voices that are
designed to fulfill a specific purpose. As an example, a survival
voice could be added to an EDS whose role would either
be to veto actions that lead to a losing state or remove an
action from consideration. Or perhaps all voices could be
able to veto actions that they evaluate as being dangerous.
A fitness function could be built into the arbitrator that is
able to evaluate how well a voice is performing in a particular
situation, and could adjust the confidence of that voice or swap
it with another voice. Voices themselves could be required to
evaluate all actions available, and the system could then make
selections based on evaluations from all perspectives. Lastly,
a voice does not need to be a singular algorithm, but could
instead be a collection of algorithms working together to return
a single opinion. An EDS of multiple EDSs.

In short, the EDS offers a considerable amount of flexibility
and consolidates the strengths of current GVGP approaches to
overcome their weaknesses, making the system more robust
overall. It is also worth noting that while a range of variations
were built for these experiments, they are still naive in their
implementation. Further sophistication in their decision mak-
ing process, and a more intelligent selection process regarding
which voices to pair together will likely improve performance
further. With the recent trend of high performing solutions

coming not from singular algorithms, but from algorithms
working together, the interesting results of this paper show
that this is a fruitful area for further research.

ACKNOWLEDGMENT

This work was partially funded by the EPSRC CDT in In-
telligent Games and Game Intelligence (IGGI) EP/L0O15846/1.

REFERENCES

[1] J. Levine, C. Bates Congdon, M. Ebner, G. Kendall, S. M. Lucas,
R. Miikkulainen, T. Schaul, and T. Thompson, “General Video Game
Playing,” 2013.

[2] M. Genesereth, N. Love, and B. Pell, “General Game Playing: Overview
of the AAAI Competition,” Al magazine, vol. 26, no. 2, pp. 62-62, 2005.

[3] M. Ebner, J. Levine, S. M. Lucas, T. Schaul, T. Thompson, and
J. Togelius, “Towards a Video Game Description Language,” 2013.

[4] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, S. M. Lucas,
A. Couétoux, J. Lee, C.-U. Lim, and T. Thompson, “The 2014 General
Video Game Playing Competition,” IEEE Transactions on Computa-
tional Intelligence and Al in Games, vol. 8, no. 3, pp. 229-243, 2016.

[5] J. Liu, D. Perez-Liebana, and S. M. Lucas, “The Single-Player GVGAI
Learning Framework-Technical Manual,” in Technical report. ~Queen
Mary University of London, 2017.

[6] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and
S. M. Lucas, “General Video Game Al: a Multi-Track Framework for
Evaluating Agents, Games and Content Generation Algorithms,” arXiv
preprint arXiv:1802.10363, 2018.

[7]1 T. Joppen, M. U. Moneke, N. Schroder, C. Wirth, and J. Fiirnkranz,
“Informed Hybrid Game Tree Search for General Video Game Playing,”
IEEE Transactions on Games, vol. 10, no. 1, pp. 78-90, 2018.

[8] D. Ashlock, D. Perez-Liebana, and A. Saunders, “General Video Game
Playing Escapes the No Free Lunch Theorem,” in 2017 IEEE Conference
on Computational Intelligence and Games (CIG), 2017, pp. 17-24.

[91 A. Mendes, J. Togelius, and A. Nealen, “Hyper-Heuristic General Video

Game Playing,” in 2016 IEEE Conference on Computational Intelligence

and Games (CIG). 1EEE, 2016, pp. 1-8.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,

A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the

Game of Go without Human Knowledge,” Nature, vol. 550, no. 7676,

p- 354, 2017.

P. Rodgers, J. Levine, and D. Anderson, “Ensemble Decision Making

in Real-Time Games,” in 2018 IEEE Conference on Computational

Intelligence and Games (CIG). IEEE, 2018, pp. 1-8.

D. Anderson, M. Stephenson, J. Togelius, C. Salge, J. Levine, and

J. Renz, “Deceptive Games,” in International Conference on the Ap-

plications of Evolutionary Computation. Springer, 2018, pp. 376-391.

D. Pérez-Liébana, S. Samothrakis, J. Togelius, T. Schaul, and S. M.

Lucas, “Analyzing the Robustness of General Video Game Playing

Agents,” in 2016 IEEE Conference on Computational Intelligence and

Games (CIG). IEEE, 2016, pp. 1-8.

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,

P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A

Survey of Monte Carlo Tree Search Methods,” IEEE Transactions on

Computational Intelligence and Al in games, vol. 4:1, pp. 1-43, 2012.

R. D. Gaina, J. Liu, S. M. Lucas, and D. Pérez-Liébana, “Analysis of

Vanilla Rolling Horizon Evolution Parameters in General Video Game

Playing,” in European Conference on the Applications of Evolutionary

Computation. Springer, 2017, pp. 418-434.

C. Guerrero-Romero, A. Louis, and D. Perez-Liebana, “Beyond Playing

to Win: Diversifying Heuristics for GVGAL” in Conference on Compu-

tational Intelligence and Games (CIG). 1EEE, 2017, pp. 118-125.

R. D. Gaina, S. M. Lucas, and D. Pérez-Liébana, “Population Seeding

Techniques for Rolling Horizon Evolution in General Video Game

Playing,” in 2017 IEEE Congress on Evolutionary Computation (CEC).

IEEE, 2017, pp. 1956-1963.

M. Stephenson, D. Anderson, A. Khalifa, J. Levine, J. Renz, J. Togelius,

and C. Salge, “A Continuous Information Gain Measure to Find the

Most Discriminatory Problems for Al Benchmarking,” arXiv preprint

arXiv:1809.02904, 2018.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

